Rigidity and Relative Hyperbolicity of Real Hyperbolic Hyperplane Complements
نویسنده
چکیده
For n > 3 we study spaces obtained from finite volume complete real hyperbolic n-manifolds by removing a compact totally geodesic submanifold of codimension two. We prove that their fundamental groups are relative hyperbolic, co-Hopf, biautomatic, residually hyperbolic, not Kähler, not isomorphic to lattices in virtually connected real Lie groups, have no nontrivial subgroups with property (T), have finite outer automorphism groups, satisfy Mostow-type Rigidity, have finite asymptotic dimension and rapid decay property, and satisfy Baum-Connes conjecture. We also characterize those lattices in real Lie groups that are isomorphic to relatively hyperbolic groups. Dedicated to Thomas Farrell and Lowell Jones
منابع مشابه
Complex Hyperbolic Hyperplane Complements
We study spaces obtained from a complete finite volume complex hyperbolic n-manifold M by removing a compact totally geodesic complex (n−1)-submanifold S . The main result is that the fundamental group of M \S is relatively hyperbolic, relative to fundamental groups of the ends of M \S , and M \S admits a complete finite volume A -regular Riemannian metric of negative sectional curvature. It fo...
متن کاملHyperbolicity is Dense in the Real Quadratic Family
It is shown that for non-hyperbolic real quadratic polynomials topological and qua-sisymmetric conjugacy classes are the same. By quasiconformal rigidity, each class has only one representative in the quadratic family, which proves that hyperbolic maps are dense. Statement of the results. Dense Hyperbolicity Theorem In the real quadratic family f a (x) = ax(1 − x) , 0 < a ≤ 4 the mapping f a ha...
متن کاملar X iv : m at h / 05 12 59 2 v 4 [ m at h . G T ] 1 J ul 2 00 6 THICK METRIC SPACES , RELATIVE HYPERBOLICITY , AND QUASI - ISOMETRIC RIGIDITY
We study the geometry of nonrelatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with nonrelatively hyperbolic peripheral subgroups is a quasi-isometry invariant. ...
متن کاملThick metric spaces , relative hyperbolicity , and quasi - isometric rigidity
We study the geometry of non-relatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with non-relatively hyperbolic peripheral subgroups is a quasi-isometry invariant...
متن کاملJ an 2 00 6 THICK METRIC SPACES , RELATIVE HYPERBOLICITY , AND QUASI - ISOMETRIC RIGIDITY
In this paper we introduce a quasi-isometric invariant class of metric spaces which we call metrically thick. We show that any metrically thick space is not (strongly) relatively hyperbolic with respect to any non-trivial collection of subsets. Further, we show that the property of being (strongly) relatively hyperbolic with thick peripheral subgroups is a quasi-isometry invariant. We show that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007